

Ac Tachometers Construction : a 3-phase alternator with a 3-phase rectifier to convert the output to dc. Must have constant field excitation - Permanent magnet field.

Non-linear at low speeds due to the forward drop of diodes Limited to lower speed ranges due to this. Range 100-1

Ac Tachometers can also produce a variable frequency output that has a constant voltage.

Use frequency-to-voltage conversion to get proportional dc

Acceleration Measurement

Definition - acceleration is rate of change of velocity

$$a = \frac{dv}{dt} = limit\frac{\Delta v}{\Delta t}$$

Sensing Methods

Newton's Law f = Ma

Where: f = force acting on body M = mass of body a = acceleration

Can measure acceleration by measuring force required to accelerate known mass.

For angular acceleration, differentiate the velocity signal from velocity sensors

Temperature Measurement

Survey of Types

<u>Resistance Temperature Detector (RTD)</u>-change in resistance of pure metals relates to temperature. Key features: wide temperature range, high accuracy, excellent repeatability, good linearity. Need constant current source and other electronics to produce output signal

<u>Thermistor</u> – temperature-sensitive semiconductor. Resistance inversely proportional to temperature. Increasing temperature causes decreasing resistance. Key features: high sensitivity, small size, fast response., narrow temperature range Not recommended in applications requiring high accuracy.

<u>Thermocouple</u> – junctions of two dissimilar metals produces small (mV) voltages when placed at different temperatures. Magnitude of voltage depends on temperature difference. Key features: small size , low cost, rugged, wide measurement range. Limitations: noise pickup, low signal levels, high minimum span (40° C.)

Lesson 13_et438b.pptx

Temperature Measurement

Survey of Types

Integrated Circuit Temperature Sensors – precision solid-state devices with linear output to temperature. Directly calibrated to various temperature scales (Celsius, Fahrenheit, Kelvin, Rankine). Key features: calibrated output voltages, linear scaling, low voltage and current draws, good linearity. Typical devices LM34, LM 35. Limitations: low temperature range typically (-55 C to 155 C)

esson 13_et438b.pptx

		Re	sistance Temperature Detectors (RTDs)	
Fir	nding constants from data Typical values for Platinum		Use table values to find constants $R_{\rm o}$, a_1 and a_2 . Substitute data into previous equation.	
	T(° C)	Resistance (Ω)	$100 = \mathbf{R}_{o} \left(1 + \mathbf{a}_{1} 0 + \mathbf{a}_{2} 0^{2} \right) \implies \mathbf{R}_{o} = 100 \Omega$	
	0	100.00	$109.9 = 100(1 + a_125 + a_225^2) = 100(1 + a_125 + a_2635)$	
	25	109.90	$139.9 = 100(1 + a_1100 + a_2100^2) = 100(1 + a_1100 + a_210000)$	
	50	119.80	Simplify equations and solve simultaneously	
	75	129.60	$0.099 = a_125 + a_2625$	
	100	139.30	$0.399 = a_1 100 + a_2 10000$	
$a_1 = 0.00395$ Mainly linear $a_2 = 4 \times 10^{-7}$				
				44

RTD Signal Conditioning

Must convert RTD resistance changes into usable voltage or current signals

Direct Methods (2 and 4 wire) - Constant current supplied to RTD and voltage measured across it. The 4 wire method removes lead-wire error.

<u>Bridge Methods (2 and 3 wire)</u> –Use dc bridge to convert resistance changes into voltage changes. Three wire method removes most leadwire resistance error.

